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INTRODUCTION 

The admittance characteristics of three types of slotted-cylinder 

antennas are considered, namely, the long a x i a l  slot, the finite axial slot, 

and the gap antenna backed by a short-circuited radial cavity. 

Most of the present effort is confined to a study of the long slot on 

the cylinder. This was done because the computational requirements are not 

too severe, yet the results should be indicative of the trends experienced 

by finite apertures in a reentry environment. Systematic computations of 

the admittance per unit length are made for various coating conditions. 

First, the case of no coating is considered, and results are compared 

with those for identical slots on flat ground planes. Second, the specid 

case of the plasma resonant w =%, v = 0 coating is analyzed to deter- 

mine whether or not a measurement of the input admittance at resonance will 

yield diagnostic information. Finally, the case of a general coating is 

treated to ascertain the effects of losses and plasma inhomogeneities on 

the admittance. 
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The exterior portion of finite apertures on coated cylinders are not 

too difficult to analyze but can lead to computational difficulties, even 
c 

in the far field where asymptotic expansions may be made to simplify the 

field expressions. In the near field, no such expansions are allowed; 

therefore, the computational requirements of the external admittance are 

more severe. Furthermore, the size of the cylinder chosen for the present 

analysis (based on adaptability to feed with the slotted line) was so large 

that add$tional diff'iculties were introduced inta the camputations due to 

the large arguments of the Bessel and Hankel f'unctions involved. 

The work on the large cylinder includes specific computations of the 

conductance for the uncoated cylinder, and experimental results for both 

coated and uncoated cylinders. Admittance expressions for the coated 

cylinder are given and preliminary calculations of the conductance are 

discussed. 

are also discussed. 

Experimental and theoretical results for radiation patterns 

Finally, the gap antenna, backed by a short circuited radial cavity 

and fed by a current element at the periphery is briefly discussed. Spe- 

cefic camputations of the impedance for the case of no coating are made, 

and expressions with coating are given. 

THE INFINITE SLOT ON A COATED CYLINDER 

The geometry of the structure considered is shown in figure 1. A long 

slot is cut into an infinite conducting cylinder, and is excited by an 

electric field which is uniform along the axis, and across the slot, and 

which varies in time as 

whose complex index of refniction, 

e+*t. m e  structure is coated with a dielectric, 

may wry in the radial direction. N 



6 

I The tangential fields, and a t  any point exterior t o  the 
I b 

cylinder are  described by a Fourier series i n  azimuth, i.e*, 

Note that equations (1) are independent of t he  axial  Coordinatey and 

that the modal coefficients k ( p )  

radial coordinate. 

application of the boundary conditions (appendix 11). 

and u ( p )  depend only on the  

These coefficients are determined by a straightfarward 

The complex power per u n i t  length radiated fkan the aperture i s  found 

by integrating the radial component of the Poynting vector across the s lot ,  

i.e., 

I The substi tution of equations (1) i n t o  equation (2) gives 

1 which is  nothing more than Parsevalts theorem i n  cylindrical  coordinates. 
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The external or  radiation admittance is  defined by2 

where Vo i s  the applied potential  across the  s lo t .  Suppose, now that the 

s l o t  is fed by a parallel-plate waveguide excited i n  the TPI mode. 

assumed that all higher modes are negligible so that 

ponent of tangential  e l ec t r i c  f f e ld  across the aperture, and i s  of the form 

It i s  

E,, i s  the only com- 

If the s l o t  i s  suff ic ient ly  thin, then E,, Z and d,, 2 a dfi. There- 

fore  the following transform pair exists: 

2xa 

Having specified the e l ec t r i c  field at the aperture, the external admit-  

tance m y  be cmputed. 

NO COATING 

If the antenna radiates i n to  f r ee  space, the normalized externa.l 

admittance per u n i t  length as derived i n  appendix IT i s  

Equation (7) was programed on an electronic computer and resu l t s  were 

obtained f o r  two cylinders having different gaps whose circumference-to- 

wavelength r a t i o  ranged from 8.4 t o  45.4. The results are  given i n  
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figure 2. 

flat ground plane as given by Earrington3 is also plotted in figure 2. 

To the accuracy with which one could read Harrington's graph, the 'admit- 

For reference, the admittance of a slot of the same width on a . 

tance of the slot on the cylinder throughout the whole range of 

very close to that of a slot on a flat ground plane. 

RESONRlJT COATING 

C was 

It has been sham (ref. 4) that only the m = 0 mode is supported at 

the plasma resonant condition, N = 0, (i.e., v = 0, 9 = 0); therefore, 

the radiation patterns of an infinitely long slot (or the equatorial pat- 

terns of a finite slot) are circulsr, regardless of the size of the cylin- 

der and thickness of the sheath as long as each are finite. Since the 

sudden defonnation of the radiation pattern into a circle suggests a 

method of diagnosing a reentry plasma, the admittance was also investigated 

to determine its behavior at plasma resonance for possible means of diag- 

nostics. At the resonant condition, this admittance per unit length 

(appendix 11) is: 

The results of equation (8 )  are plotted in figure 3 as a function of C 

and W. Again two cylinders were chosen with C ranging between 8.4 and 

45.4. Note that for W = 1.00 + E, which corresponds to a vanishing 

plasma thickness, the conductance decreases from the free-space value by 

an order of magnitude. Also, the susceptance can change from a large 

capacitative to a small inductive value or zero when the structure is 
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. 
coated with this resonant plasma. 

admittance per unit length approaches zero. 

tance to drap at resonance suggests that a measurement of admittance could 

also be used for diagnostics. 

As the plasma becomes thicker, the 

"his tendency for the admit: 

The admittance of the slot has not yet been computed as the index of 

refraction increases from zero to some small finite value. However, based 

upon calculated changes in the radiation patterns due to a small  departure 

from re~onance,~ one concludes that additional azimuthal modes (m = 1, 2, 3, 

etc.) are rapidly introduced into the field dependence, at least for 

ranging between 22.7 and 43.4. 

will alter, perhaps significantly, the input admittance from what it is at 

resonance; the extent of the alteration increasing with increasing 

However, for s m a l l  

cause a measurement of the input admittance near and at plasma resonance 

to be a usef'ul plasma diagnostic tool. This remains to be investigated. 

GENERAL COATING 

C 

As such, one can expect that these modes 

C. 

C, this alteration may still be sufficiently sma l l  to 

The method described by Swift? was used to analyze the slotted cyl- 

In inder coated with a dielectric having a complex index of refraction. 

this approach, the wave equation is numerically integrated through the 

plasma, thereby avoiding the computational problem of evaluating Bessel and 

Hankel functions of complex arguments, which describe the functional 

behavior of the fields within the coating. 

used, the case of a coating whose dielectric properties vary  radially may 

also be treated. 

Furthermore, if this method IS 
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. Using S w i f t ' s  notation, the normalized admittance for either homo- 

geneous or inhamogeneous coatings (see appendix 11 for an outfine) is: 

where the prime indicates differentiation with respect to the radial 

parameter . 
Computations of equation (9 )  are plotted in figures 5 and 6 as a 

function of complex index of refraction for coating thickness corresponding 

to = 0.25 and a slot width corresponding to a = 0.25 for 

cylinders of size 

admittance is relatively insensitive to variations in C. 

a b  
Ay hv 

C = 4, 8, and 12. It is important to note that the 

One is therefore 

tempted ta conclude that the admittance of identical slots on cylinders 

and flat ground planes ne, for all practical purposes, the same" if 

and if the loss angle 6 

the magnitude of N 2 1. 
Flaw field analysis shows that the electron density and collision 

C h 4 

of the coating is between goo rtnd 180°, and if 

frequency may va;ry considerably within the plasma sheath. 

of the distribution dong a normal to the vehicle is shown in figure 7, and 

was chosen as a coating for a cylinder of physical radius 4.152 cm and an 

aperture width of 1.016 cmt. 

A typical example 

The admittance was computed as a function of 

the exciting frequency, and the results are given in figure 8. 
* A more general conjecture of this type was suggested during conversa- 

tions with one of the writers (W) by W. Rotman of AFCRL prior to the time 

these extensive camputations were performed. 

h i s  width corresponds to the width of a standard XI-band waveguide. 
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Nineteen admittance points were computed i n  the frequency interval  of 

10.0 t o  11.8 kmc, yet this number w a s  insufficient t o  establish a smooth 

curve because of small-scale fluctuations. Nonetheless, some interest ing 

features are revealed. The most s t r iking effect  occurs i n  the region of 

peak plasm frequency (10.76 kmc) , where the conductance decreases sharply 

and msceptance begins t o  decrease monotonically. 

This seems t o  be consistent with the resu l t s  of the resonant plasma 

coating. At frequencies above resonance, the conductance rises rapidly, 

but the susceptance remains relat ively constant. 

increases, the admittance should approach the  no coating values. Below 

A s  the frequency 

resonance, the curves are  fluctuating too much t o  suggest any general 

conclusions. 

For the types of distributions shown i n  figure 7, the peak plasma 

frequency seems t o  be a sharp dividing point f o r  the admittance properties 

of s lo t s  on cylinders. Whether t h i s  i s  true i n  general remains t o  be seen. 

TEIE AXIAL SLOT ON A COATED CYLINDEB 

The geometry i s  shown i n  figure 9. A waveguide, excited i n  the "Eo1 

m o d e  opens onto a cylindrical  ground plane, w i t h  the long dimension of the 

waveguide para l le l  t o  the axis of the  cylinder. 

neglected i n  the waveguide, and the s l o t  i s  assumed t o  be th in  enough so 

-that over the  s lo t  E,., = E$j and a d@ = dq. 

Higher-order m o d e s  are 

Since the aperture i s  f i n i t e ,  and since the tangential  f i e lds  vary 

with z, the f i e lds  are  described by continuous modes i n  axis  and discrete  

modes i n  azimuth, i .e. ,  
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And the complex power radiated by the aperture is 

Using Parseval's theorem, equation (U) can be rewritten in the following 

f o m  

And, the external admittance is: 

If the tangential field is Eq 2 E@ the following transform pair exists: 

The external admittance can now be computed using equations (13) and (14b) 

in connection with the solution of the boundary-value problem, which gives 

NO COATING 

For this case of no coating, the normalized external conductance and 

susceptance are 
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where 

Equation (l5a) was computed over the  X-band range of 6.56 t o  13.12 h c  

corresponding t o  a range of s l o t  lengths of 1/2 t o  1 wavelength f o r  t he  

mol mode, and the r e su l t s  are shown i n  figure 10. For t h i s  range of fre- 

quencies and the 13-inch-diameter cylinder used (2a = 13 in.)  the parameter 

C increases from 22.7 a t  k = 0.5 t o  45.4 at  k = 1.0. 

As a p a r t i a l  check of the cmputations, the  width of the s lo t  a t  

k = 0.5 w a s  allowed t o  approach zero i n  order t o  compare the results with 

those Of Wait (ref. 5) f o r  the  th in  resonant s lo t .  

formed here 

p a r t i a l  check served as a go-ahead f o r  proceeding with the  other cases. 

The computations per- 

gcv = 0.383 compared t o  Wait's gcvlWait = 0.384. This 
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Exp"TAL RESULTS - NO COATING 

The particular size of aperture and range of cylinder s ize  C consid- 

ered i n  most of the computations were chosen with X-band experiments i r  

mind. 

24 inches long, and i s  ju s t  large enough t o  contain a Hewlett-Packard 

s lot ted l ine.  

t o  the inner dimensions of a standard RG-52U waveguide. 

w a s  realized by placing a s m a l l  brass plate curved t o  f i t  the  cylinder sur- 

face and held i n  place by a strap. Photographs of the end v i e w  showing the 

feed arrangement and the measurement setup i s  shown i n  figures l l  and 12. 

The cylinder shown i n  figure U i s  13 inches i n  diameter and 

The aperture s i z e  i s  0.4 inch X 0.9 inch, which corresponds 

The short c i rcu i t  
: 

I 

The experimental and theoretical  resul ts  are  shown i n  figure 13. The 

measured and calculated values of the input conductance d i f f e r  by, at m o s t ,  

5 percent. The agreement i s  sufficiently close t o  conclude that the effect  

of higher-order m o d e s  and/or computational errors are negligible fo r  the 

large-sized uncoated cylinder used here. 

I 

I 

Agreement between f i rs t -order  

I theory and experiment can a l so  be expected t o  be good f o r  smaller cylinders 

with correspondingly thinner s lots .  

EWERIMENTAL fiEsuLTs - POL- CQA'ITNG 

The cylinder used above for  the noncoated condition was coated with a 

pulyethylene coating (representing, electrically,  an ablative coating) of a 

I quarter-inch thickness, i.e., T = b - a = 0.25 inch, and measurements of 

input waveguide admittance w e r e  made. "he die lec t r ic  constant of t h i s  

coating material was first measured over the X-band frequency range t o  

ascer ta in  the correctness of the  published value of 

samples were cut out of the polyethylene stock sheet and their d ie lec t r ic  

constant was measured by both the Von-Hippel method and by direct ly  

E r  = 2.25. Four 
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4 . 
measuring the guide wavelength in a slotted line conrpletely fiYed with 

the sample material. Both methods of measurement gave an er which was ' 

within approximately 5 percent of the published value of 2.25. 

within the accuracy of the measurements; thus, one can justifiably take 

the dielectric constant as 2.25 within this accuracy. 

This is 

The polyethylene sleeve was "heat fitted" on the cylinder so as to 

make a snug fit, and it is estimated that the accuracy of concentricity 

of the ouker surface and inner surface of the dielectric coating was within 

fo.010 inch. The slip fitting of the dielectric sleeve on the metal cylin- 

der is depicted in the photograph of figure 14. 

The measurements of admittance were made in the conventional manner as 

with the condition of no coating. 

and to avoid the necessity of removing the dielectric sleeve and then 

replacing it at each frequency used, the short was first placed on the non- 

To realize the short circuit condition 

coated cylinder at each of the frequencies to be used and the frequency 

setting was accurately determined by means of a frequency meter accurate to 

within 9 5  mc (Hewlett -Packard Model X3328). 
then reused with the short removed and the dielectric sleeve in position. 

These exact frequencies were 

Plots of gin and bin are shown in figures 15 and 16, respectively. 

Measurements were then repeated for four different circumferential 

positions of the dielectric sleeve at each of several frequencies, as shown 

in table I and figures 15 and 16. The dielectric positions were separated 

by increment6 of 90° and designated by positions A, B, C, and D as defined 

in table I. 

tance differs for each position of the dielectric even though the frequency 

was held constant. 

It is seen from figures 15 and 16 that the resultant admit- 

This can be attributed to one or both of the following 
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I - 
' reasons: f o r  each position the "effective d ie lec t r ic  constant" of the 

-coating d i f f e r s  due t o  the approximately fi percent deviation i n  the cir -  
~ 

I cmnferentid variation of d ie lec t r ic  constant which exists; f o r  each posi- 

t ion  the effect ive thickness of the dielectr ic  coating d i f f e r s  due t o  the  

I inner and outer radial variation of approximately W.010 inch. I n  either 
I 

case, such changes influence the mean e lec t r ica l  circumPerentiallength of' 

the coating, 
- 
Cy here defined by: 

where i s  the mean radius and 3 i s  the mean refract ive 

index. It i s  seen that the change i n  due t o  changes i n  ii: (i.e. , W) 
I and/or i s  

I which since W = 1 and N =m/a i s  

It i s  recognized that the  first term contributing t o  bi? i s  the 

change i n  circumferential electrical length due t o  the  change i n  the 

refractive index of the coating whereas the  second i s  due t o  the change i n  

thickness of the costing. Bar, here upper limits of & and m/a are' 

approximstely & = tO.02 and &?/a = t0.m so that g= C (0.024), 

& 0.02%. For the cylinder used a t  X-band, & = 45, therefme, 

t he  maximum change i n  C can be = 1.0; i.e., the mean circumferen- 

tial e l e c t r i c a l  length of the coating can approach the order of a wave- 

length i n  the coating material. Intuit ively,  one w o u l d  expect that such a 
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change could very w e l l  l&ad t o  a large change i n  input admittance. 

seen t h a t  the major contribution t o  i s  from G. Thus, f o r  large 

It i s  

cylinders (large C I S )  smal l  changes i n  the refract ive index may be 

expected t o  account fo r  the observed changes i n  admittance. 

To make meanin- measurements of the input admittance and t o  com- 

pare them with computed resul ts ,  it follows that s t r i c t e r  tolerances on the  

refractive index and coating thickness will be necessary i f  one uses elec- 

t r i c a l l y  Large cylinders. 

reduced (as seen from eq. (19)) f o r  smaller cylinders. 

These tolerances w i l l  be correspondingly 

It would  seem 

then that f o r  an i n i t i a l  test of theory it may be more appropriate t o  use 

smaller cylinders. 

The radiation patterns a l s o  seemed t o  be sensit ive t o  small changes 

i n  the e l ec t r i ca l  parameters. 

shown i n  figures 17(a) t o  17(f) along with the corresponding computed 

patterns (using expression 335 of Wait2). 

between theory and experiment i n  the forward direction i s  qui te  satis- 

factory; however, at the higher frequencies (k = 0.80, 0.85, and 0.90) the 

The measured equatorial  plane patterns are 

It i s  seen that the agreement 

radiation leve l  measured i n  the rear  w a s  considerably higher than t h a t  pre- 

dicted, although for  the lower frequencies (k = 0.65, 0.70, and 0.75) 

agreement at the rear  i s  s t i l l  sat isfactory.  The poor agreement i n  the 

rear  direction may also be a t t r ibu ted  t o  the c r i t i c a l  dependence on the 

parameters of N and W. 

ADMI'I"CE OF A COATED AXIAL SLOT 

From the work of Wait2 the pertinent f ie lds  established i n  region 1 

(a 6 p 5 b) and region 2 (b 5 p 5 m) of figure 11-1 are given by (336), 

,(337), (3391, ($01, and (3421, (343>, (3451, (346) of Wait, respectively. 

- 14 - 



. 
For the sake of'brevity, these expressions will not be rewri t ten here, but 

' it i s  noted that the following difference i n  notation is  used: 

W a i t ' s  notation Notation of 
t h i s  report 

uo 
k, 

uo 
k, 

Furthermore, it i s  noted here that i n  table I of W a i t 2  (p. 128) that the 

coefficient should be multiplied by u, and the coefficient am5 i s  

lacking a minus sign. 

Here again the tangential  e l ec t r i c  fields on the cylindrical  surface 

p = a a r e  assumed t o  be 

(0 off s l o t  

From equation (ma)  it follows that the transform of E$ i s  

and from (339) of Wait the transform of HZ i s  
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From Parseval's theorem 
. 

the external (radiation) admittance is 

Using the six tangential boundary conditions (continuity of E@, E=, 

at p = b, and continuity of E$ and E, at p = a) and determi- fw HZ 

nants gives expressions for G, b, and %, respectively, where is 

the determinant formed by the coefficients &nrp, etc., in table I, p. 128, 

of Wait. 

Explicitly solving for G, b, and Dm and substituting the expres- 

sions into equation (23) then gives 

where : 

A s  a partial check on equation (24), consideration of the special case 

of no coating (b = a) or an air coating (N = 1) each cause equation (24) to 

reduce to equation (l5a) and (l5b) as should be 



* RGtionalization and normalization of equation (24) then gives 

where X 3 C W i 1  - 9, 

r, = -jG 

- um = -jum 

1% is important to note that the above expression was also derived inde- 

pendently by integrating the Poynting vector over a spherical surface of 

radius r in the far field. As a partial check on equations (27) the case 
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of no coating (b = a, i.e., 

equations (27) to equation (15a) as should be. 

W = 1) or an air coating (W = 1) both reduce 

It is noted that the above reduction of yc shows that only the inte- 

gration from 0 5 y 5 1 
ipated if one considers that the conductance can also be obtained using 

Poyntihg’s vector and the radiation fields). 

contributes t o  the conductance (which may be antic- 

However, the expression for b, w i l l  be of the form 

N2L = s,’+ LN+ s,” 
for the general case of an arbitrary homogeneous coating. 

explicit form for the integrands of equation (28) has not been obtained. 

As yet the 

For the special case of a plasma coating at plasma resonance (one for 

which w = uj, and v = 0) the refractive index is identically zero, i.e., 

N = 0. 

radiation field is independent of and that, therefore, the only term 

contributing to-the fields in the summation over m is the m = 0 term. 

This must also hold for the near fields and the fields over the plasma 

cylinder else no omnidirectionality would be possible. 

only the m = 0 

shown rigorously). 

Bessel, Hankel, and modified Bessel functions are involved. A s  such, the 

programing of the expression for 

For this condition, it has been shown that the equatorial phne 

Thus for N = 0, 

mode of equation (25) need be retained (this can also be 

In this case, only the zero order and first order 

y I N=O 

An attempt was made to program a modified form of equation (27) in 

should present no special problem. 

order to compute the conductance of the axial slot on the 13-inch-diameter 

coated cylinder. However, the results seemed to be in error by at least 
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' -  
6 percent. 

'gated by examining a plot  of the integrand of equations (27). 

Possible errors i n  this computation are  s t i l l  being investi-  

m CYLIlI-DFacAL GAP AmTENNA 

The antenna under discussion, shown i n  figures 18, 19, and 20, i s  

essent ia l ly  a cylindrical  geometry version of a spherical s l o t  antenna 

described by Musiake and Webster7. 

tures that make it extremely useful a s  a diagnostic too l  f o r  reentry plasma 

sheaths. To name a few: 

Such an antenna has interest ing fea- 

1. I t s  cylindrical  structure with no protruding part a l l o w s  it t o  be 

an integral  par t  of the reentry vehicle. 

2. The feed system consisting of the inner conductor of a coaxial 

cable across a gap much smaller than a wavelength supports a uniform cur- 

rent; as a result, solutions are possible without assuming an aperture 

f i e l d  distribution. 

3. I n  sp i te  of such a narrow gap, the antenna is  an excellent radiator 

when i t s  circumference i s  approximately e q d  t o  2 wavelengths. 

quencies, the  physical s i z e  of the antenna i s  compatible with the size of 

many small reentry vehicles. 

A t  VBF fre- 

4. A n  additional feature of the narrow gap i s  t o  rule out the existence 

of axial magnetic f i e lds  at  the aperture and inside the gap. 

only azhnfthal 

tained even i n  the presence of radial ly  nonhmogeneous plasmas. 

Consequently, 

E, m o d e s  are  excited and t h i s  f i e l d  distribution is main- 

5. The antenna i s  a resonant structure whose radlation and impedance 

properties are determined only by one significant azimuthal mode. 

number of lobes i n  the radiation pattern, it i s  possible t o  determine the 

Significatlt modal impedance. 

From the 
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6. Finally, t h i s  is  an antenna which i s  amenable t o  simple mathe- - . 
matical analysis, permitting accurate prediction of both far and near f i e l d  

perf omnce .  

I n  this paper the antenna input impedance both with and without plasma 

coating i s  discussed. 

and a r e  correlated t o  the radiation patterns. 

INPUT IMPEDANCE WITH NO PLASMA COATING 

Experimental checks are only given f o r  no coating, 

Consider the cylindrical gap antenna depicted i n  figure 18. The gap 

width d i s  narrow compared t o  the free-space wavelength &,(d <C a) and 

i s  formed by a rad ia l  waveguide short-circuited a t  i t s  center by a spacer 

of radius 

the guide a t  

with the guide top plate and i t s  outer conductor i s  shorted out against the 

bottom plate. Because the  gap width i s  small, with respect t o  the wave- 

length, the current along the coax inner conductor across the gap can be 

taken to  be constant and equal t o  

the antenna input impedance presented by the gap t o  the coax i s  

p = po. The gap i s  fed by a coaxial l i n e  located at the r i m  of 

The coax center conductor makes e l ec t r i ca l  contact p = a. 

I. If the voltage i n  the coax i s  Vc, 

(29)  
V 
I Zin = 

This i s  not merely a definit ion but a l so  a measurable quantity re la ted t o  

the reflection coefficient I? i n  the coax via  i t s  character is t ic  imped- 

ance Z,, 

i + r  Z i n  = z, - 1 - r  

In order t o  calculate Zin, r e fe r  t o  f igure  21 which shows the feed region 

grossly enlarged. The voltages V, and Va i n  the coax and i n  the  aper- 

ture, respectively, are  related by Maxwell's equations t o  the magnetic f lux  
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. 
enclosed by the line integral of the electric field yielding these voltages, 

that is , 
- va - vc = -- a J E - d s  

at 

for a perfectly conducting wire. The integration is over the surface 

defined by the loop boundary just described. The right-hand side of equa- 

tion ( 3 2 )  is the inductive 

current I flowing in the 

plates. Equation (29) can 

reactance of the loop, iw& times the total 

wires and spreading through the radial guide 

thus be rewritten after dividing by I 

- -"' is Immediately recognized as the input impedance Zin being sought. I 

The ratio 5 has the dimensions of an impedance and is defined as the 
antenna aperture impedance. 

I 
It will be shown that the aperture impedance 

is not in general directly measurable, but in some cases it can be calcu- 

lated from a knowledge of the fields in the aperture. 

can be considered to be solely due to the reactance of the loop. 

The quantity im& 

Equation (32) may now be expressed as follows" 

where the first term in parenthesis is equal to - -va and the second to 

im&. Each parenthesis consists of two parts, the self-impedances Za, 

Zf, and the mutual Zaf = Zfa. (The f and a subscript denote, respec- 

tively, feed and aperture impedances.) 

I 

The two impedances, aperture and 

~ ~~ ~ 

%r. George I. Cohn made the analysis described by equations (33) 

to (38) .  
- 21 - 



feed, can sometimes be calculated and/or measured independently of each 

other if the interaction caused by the mutural impedances i s  negligible. 

This i s  the case if the f ie lds  can be divided on a spa t ia l  basis in to  sub- 

volumes such tha t  the f i e lds  i n  any one subvolume can be attr ibuted only t o  

sources not producing f i e lds  i n  any other subvolume. Thus, i f  

o r  

i s  direct ly  calculable from the f i e l d s  i n  the gap which a re  

Zf i s  the 

=I then Z, 

obtained by solving the electromagnetic boundary value problem. 

wire inductive reactance in  the absence of the gap. 

The flux common t o  two subvolumes i s  always less than the self-linking 

flux; theref ore, 

or  

One way t o  insure separabili ty of impedances as given by equation (33) i s  

t o  demand 

or 

tha t  i s ,  either the wire inductive reactance i s  much smaller than the aper- 

tu re  impedance o r  vice versa. It w i l l  be shown t h a t  the feed w i r e  induc- 

t i ve  reactance can be made t o  f u l f i l l  the  inequality equation ( S b )  f o r  the 

gap antenna i n  question and vanishes as the gap goes t o  zero. The feed 

- 22 - 
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. 

impedance zf and the aperture impedance Za (in the absence of coupling 

between them) will now be calculated, keeping in mind that as long as equa- 

tion (Sb) is satisfied, the antenna input impedance Zin is the sum of 

these two contributions. 

i An upper bound on the feed wire inductive reactance is established by 

I calculating the inductance of a coaxial line of length d with inner and 

I outer radii rl and 1-2. Using the geometrical. approximation, it is 

I easily sham that 

d 1  r2 If - -  - ma - - 10. 
h , 3 0  =1 

Since the antenna is to have an input impedance of TOn 

to match the coax characteristic impedance, equation (36) is not fulfilled 

md the input impedance is not separable into feed and aperture. Changing 

the outer to inner coax radii ratio in equation (37) is not as effective as 

reducing the gap width since the logarithm varies slowly with the ratio in 

question. 

to d/& 

impedance is separable. 

resistive in order 

However, if the gap width is reduced by 1/2 or 1/3 corresponding 

of the order of 1/60 to 1/100, equation (36) is fulfilled and the 

The solution of the electramagnetic fields subject to the boundm?y 

conditions yields the aperture admittance, 

mode 

as shown in figure 22. 

Ym = - I for each peripheral 
--In 

m, where Vm = E, d, is the voltage across the gap for the mth mode 

The total aperture impedance is in turn related to 

- 23 - 



where hi i s  the susceptance presented at the feed by the in te r ior  

region, and Gm and he i s  the admittance contributed by the exterior 

region. For a narrow gap, with uniform feed current, the resultant modal 

admittance 

exterior space Yo 

Ym normalized with respect t o  the wave impedance i n  the 

((120~2)~~ f o r  f r ee  space) has been found t o  be 

sin(+) 
a i n  c "3 = e-) 

(40) 

x, a,, do, ro being respectively normalized: wave number k/ko, 

cylinder radius koa, gap width kod, spacer radius kopo. Ym w a s  

derivedby calculating the f i e lds  i n  both regions, matching them a t  the 

boundaries between antenna and exterior region taking in to  account the 

discontinuity i n  current. 

For each mode m, there ex is t s  a current sheath Jzm around the gap 

periphery which i s  independent of z ( f ig .  22). The e l ec t r i c  f i e l d  

across the  gap result ing from t h i s  current density i s  a l so  independent Of 

z a t  the interface. 

a t  the interface does not vary along the gap width. 

It follows tha t  the loca l ly  induced magnetic f i e l d  

Pursuing th i s  reasoning 
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. 
I 

I 

reasoning fkrther, only a z-dependent 3 could produce an Ep component 

and this one in turn would produce an 

in the absence of z-dependent field components, no H, 

ated at the gap interface. 

Hz. One therefore concludes that, 

component is gener- 

I 
FXALUATION OF APERTURE lWEDANCE Za 

Equation (40) for h, be, and hi was used to calculate the 

various m o d a l  impedances for a frequency scaled up model of the cylindrical 

gap antenna under study. The model shown in figures 19 and 20 was designed 

to operate mound 1090 mc with the following parameters: 

Gap width, d = 1, inch, do = 0.156 

Spacer radius, 

Gap radius, a = 3 inches, a. = 2.13 

Operating wavelength, 

32 
po = 1 inch 

&, = 8.81 inches 

Graphs showing pertinent calculations of go, boe, and bim are shown in 

figures 23, 24, and 25. The calculated normalized conductance and suscep- 

tance for the above parameters as well as the unnormalized corresponding 

impedances are shown in table I1 for mode numbers ranging f r o m  m = 0 to 

m = 9. 

antenna circumference approximately two wavelengths, the first order mode 

(m = 1) contributes most significantly to the impedance. The modes below 

(m = 0) have a reactance that tends to cancel the reactance of the modes 

above it (m 2 2). 

resonant structure, with one contributing mode. (For a. - 1 it can be 
shown that Zo is the resonant impedance.) The resonant mode determines 

both the impedance as well as the radiation characteristics. 

~ 

~ 

, The important feature of these results is the fact that f o r  an 
I 

In essence, f o r  each value of a. the antenna is a 

For the 

- 25 - 



specific choice of parameters above 

pattern shown i n  figure 26 exhibits the two lobes tha t  one would expect 

from the m = 1 cosinusoidal aperture dis t r ibut ion of figure 22. There- 

a. = 2.13, the measured radiation 

- 

fore, the s ize  of the antenna establishes only one specific mode as the  

contributing one and t h i s  mode i n  turn determines uniquely both the 

input impedance and the radiation f ie lds .  

A€'EEI'URE IMPEDANCE IN THE PRESENCE OF A NONHOMOGENEOUS PLASMA 

The plasma model under consideration i s  represented by a rad ia l ly  

varying d ie lec t r ic  uniform, i n  the @- and z-direction. 

The approach followed i s  the one developed by C. T. Swift 8 . The 

plasma is  subdivided i n  n-concentric cylindrical  sheaths. Each sheath i s  

taken t o  have a uniform plasma and col l is ion frequency equal t o  i t s  aver- 

age through the sheath. 

"he f i e lds  in  the r ad ia l  waveguide are  matched a t  the interface t o  

those i n  the f i rs t  sheath. The f i e l d  transforms i n  each sheath are no 

longer forward traveling waves expressed i n  terms of Hankel functions. 

They are  standing waves consisting of the l i nea r  superposition of Hankel 

and Bessel functions. The f i e l d s  i n  Region I and the f i r s t  sheath of 

Region I1 are  

Region I 
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. 
Region I1 (1st layer) 

1 

The foregoing expressions f o r  Region I were obtained after making the 

sub st i t u t  ion 

I 

I q,* = ko2 

In  Region 11, forward traveling waves are replaced by the standing 

waves, i . e. , 

7:l and $2' are derivatives with respect t o  the argument ( u l p ) .  
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The modal aperture admittance Ym is now expressed in terms of these 
' 

unknown coefficients by demanding that 

Using the expressions (41) and (k), it follows that 

In order to eliminate the dependence on 

integrated from 0 to d. And, use of the relation 

z, both sides of equation ( 4 6 )  are 

results in 

+ s1€$(2)(ulai kC0(k)& + iY (47) 

1 In order to find Ym the four coefficients hl, Am1, bm , and s1 
must be expressed in terms of Vm. This is done as follows. 
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As sham by Swift" a Transfer Function can be developed which relates 
I 

'via a 4 X 4 matrix the unknown coefficients, +l-, hl, hl, and s1 
~ * -  

in the first sheath to the free-space coefficients 

sheath. The transfer function depends only on the values of Jm(uipi) 

Hm(9pi) at each sheath and the corresponding plasma parameters. The 

matrix coefficients are labeled Gib. 

%,% beyond the last 
I 

and 

Their values are given in the cited 

reference. The following 
I 

J P  

relation holds among these 

cl2 

c22 

c32 

c42 

- -  
0 

cm 
0 

a, - -  

coefficients 

The preceding equations reduce the number of unknowns from 4 to 2. Appli- 

cation of the two tangential boundary conditions at the antenna surface, 

i.e., 

%e field expressions a.re different from Swift because the factor 

is absorbed in the coefficients a,l(k), ,kml(k), bl(k), and 

Furthermore, the fields are constructed from e*eikZ while 
I(YIoE1 
B&k). 

Swift uses negative exponents. 

Swift's by dividing a l l  field transforms by K+L,E~ and changing m and 

k into -m and -k. 

The above expressions can be converted to 
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allows the unknown coefficient % and & and, consequently, &:, 

bl, and h1 to be expressed in terms of V,. The derivation now 

follows . 
Equation (48) can be written as 

I 

%1 = ‘42‘m + c44~J 

Therefore, from equations (47), (49), and (43), after using equation (501, 

(51) 
1 1 1 Solving for Cm and in terms of V, and expressing , Am , bm 9 

and Bml in terms of V, via equation (49) and substituting into equa- 

tion (41) results in the following expression for the modal antenna aper- 

ture admittance covered with plasma. 
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. 
where A the  determinant of the 4 X 4 matrix i n  equation (51) i s  given by: 

* = (cUc* - c14c32)JmJm' + (c12c44 - c14c42)J& (2) 

It i s  understood that the  arguments of the cylindrical  functions are 

u la  = J(koI2 - k2)a. The quantity kol i s  the  wave number i n  the f irst  

plasma sheath adjacent t o  the  antenna. 

As a partial check on the  va l id i ty  of expression (52), the plasma is  

removed, i n  which case 

c22 = C& = 1 

kol = ko 

I l l  = u 

The admittance now reduces t o  

(54) 

where Co*Co = s i n  c2 u. 2 

Fquation (54) i s  equivalent t o  equation (40) pr ior  t o  breaking it in to  

real and Fmaginary pasts. 
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CONCLUDING 

This investigation of slotted cylinders has led to the following con- 

clusions : 

(1) For the case of resonant coating (.) = 9, v = 0), the admittance 

approaches zero as the thickness of the coating increases. 

thicknesses, the susceptance can change from a large capacitative to a 

small inductive value or to zero. 

At intermediate 

(2) For all practical purposes, the admittance of identical slots on 

cylinders and ground planes is equivalent if the circumference-to- 

wavelength ratio of the cylinder is greater than f o u r  and if the loss angle 

of the plasma lies between 90° and 180°, and the magnitude of N ,> 1. 

(3)  For the reentry plasma distribution shown in figure 7, the admit- 

tance undergoes pronounced changes when the propagating frequency 

approaches the peak plasma frequency. 

(4) The admittance of apertures on large coated cylinders (C 2 20) 

seems to be sensitive to slight changes in the electrical and mechanical 

tolerances of the coating. 

cal results will be difficult to realize experimentally unless electrically 

small cylinders are used (C ,< 10). 

A s  such, one is led to conclude that theoreti- 

( 5 )  The resonant properties of the cylindrical gap antenna indicate 

"he presence of plasma or that it may be useful for plasma diagnostics. 

any change of antenna parameters brings one azimuthal mode into prominence 

which determines both the shape of the radiation pattern and the value Of 

the antenna input impedance. 

expected that various modes would be successively excited; therefore, one 

could expect the pattern and the input impedance to change accordingly. 

A s  the plasma varies in density, it would be 
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APPENDIX I 

LIST OF SYMBOLS USED I N  THE ANALYSIS OF TBE AXLAL SLOT 

radius of conducting cylinder 

s i n  40 

susceptance 

radial distance t o  air-plasma interface 

circumference of cylinder in wavelengths = a 
e lec t r ic  f i e l d  

hv 

Fourier transforms of e lec t r ic  f ie ld  

amplitude of e l ec t r i c  f i e l d  a t  aperture 

amplitude of incident TE,1 wave 

conductance 

magnetic field 

Fourier transforms of the magnetic field 

axial mode number 

length of s lo t  i n  wavelengths = 2 / h ,  

length of s l o t  

azimuthal mode number 

index of refraction 

power 

4’1 
Poynting vector 

radial mode number 

applied potent ia l  on s lo t  
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I = h l a  " I  - 
W width of s l o t  

Y admittance 

YO admittance of f r ee  space 

waveguide admittance of TEol mode  
Y O 1  

B wave number 

wave number fo r  the TEol waveguide mode Pol 

r reflection coefficient 

{ :1: Emn Kronecker del ta  = 

E die lec t r ic  constant 

EO permittivity of f ree  space 

E r  

7,5 

A wavelength 

he01 guide wavelength 

PO permeability of f r ee  space 

V electron col l is ion frequency 

P , h Z  cylindrical  coordinates 

real part  of the d ie lec t r ic  constant 

transverse coqonents within a rectangular waveguide 

angular width of s l o t  80 

0) exciting frequency 

9 plasma frequency 

Subscripts : 

C external 

i n  input 

2 per u n i t  length 

~ 
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* R  plasma resonant 

T va.mm 

9 

P, 8, 

I 

vector component along narrow dimension of waveguide 

vector components along the three principa3 directions i n  

cylindrical  coordinates 
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ADMITTANCE MPRESSIONS FOR LONG SLOTS ON CYLINDERS 

The pertinent f i e lds  i n  regions I and I1 of the structure shown i n  

figure 1 are: 

(11-1) 

(11-2) 

(11-4) 

where the prime denotes different ia t ion of the Bessel and Hankel f'unctions 

with respect t o  the argument. 

I f  it i s  assumed tha t  the aperture f i e l d  i s  of the  form: 

then the boundary conditions at, p = a and p = b give the following 

algebraic relationships 

(11-6) 
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Solving the above equations for & and % gives: 

where 

Theref ore : 

. 

where 

(11-10) 

(11-ll) 

(11-12) 

(11-13) 

From Parseval's theorem, the external admittance per u n i t  length is given 

by 

- 37 - 



And the substitution of equations (11-5) and (11-12) into equation (11-14) 

results in the following admittance expression 

For the case of no coating (u = 1 or b = a), equation (11-17) 

becomes : 

(11-16) 

1 It has been sham that at plasma resonance, the fields, hence the 

admittance, are indepent of the azimuthal coordinate, 6. Therefore, on ly  

the m = 0 mode is supported, and equation (11-15) reduces to 

In order to evaluate the above equation, the following expansions are 

necessary : 

2 
- ?  Jo(x) 2 1 

(11-18) 
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t o  give 

2 Lo:-j-  
ltNc 

I Therefore, f o r  N = 0 and W > 1 

cy 2 uo = -j - I 

(11-20) 

To analyze the inhomogeneous plasma, a method described by Swifi4 i s  

Using Swift 's notation, the axial magnetic f i e l d  with the  plasma used. 

expressed as follows: 

(11-21) 

where the r a t i o  

solutions of and a t  the surface of the conducting cylinder, 

r = a. 

erence and w i l l  not be repeated here. 

= h ( r )  + jb(r) i s  numeric- e d u a t e d  t o  give c, 

The de ta i l s  of the  technique a r e  adequately described i n  the re f -  

At r = a the boundary condition a t  the aperture gives 

which a l l o w s  %, hence HZ1(a,@) t o  be computed. Therefore, use of 

P a r s e d ' s  theorem gives the following admittance expression 
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The prime in the above equation denotes differentiation with respect to r. 
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APPENDIX I11 

RELATIONSHIP B E "  INTERNAL AND AIMI'I"m 

Computation of the external admittance is only half the story since 

the external admittance as such is not a measurable quantity; when an 

experiment is performed, the input admittance is referred through a meas- 

urement of the reflection coefficient. This input admittance (or reflec- 

tion coefficient) as seen in the feed structure must be related to the 

external admittance. To do this, however, flow conservation immediately 

inside and outside the slot is used. 

The pertinent fields which exist in the waveguide, due to the -wave- 

guide opening onto the ground plane, a r e  

(111-la) 

Assming that higher-order terms Vanish, i.e., 

complex power flow expressed in terms of the fields inside the slot is 

(h.t.)E = (h.t.)H = 0 the 

But, 

Theref ore, 
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But, the input admittance is defined as 

Therefore, the following relationship exists between the external and input 

admittance 

or, in normalized f om, 

(111-6) 

Therefore equation 111-7 relates a calculated normalized external admit- 

tance (ycv) to the measurable normalized input admittance yin. 
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TABLE II. - TABLES OF MOBAL IMPEDANCE OF GAP A"NA 

bme +bi 
27.1 

- a 6 6  

48.8 

-107 

-168 

-229 

-292 

-355 

-420 

-486 

3.9 - 512.7 

53 + 35-1 

-6  + 37-7 

33.5 

32.3 

j2.0 

31.6 

jl. 4 

3.9 

j.8 
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Figure 1. - Geometry of coated slotted cylinder. 
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Figure 4.- Equatorial radiation patterns near plasma resonance. 
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Figure 9.- Waveguide excited axial slot. 
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Figure 14.- Dielectric sleeve on m e t a l  cylinder. 
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Figure 17. - Measured (and computed) equatorial plane radiation patterns. 
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Figure 17. - Continued. 
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Figure 17. - Continued. 
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Figure 17. - Continued. 
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Figure 17. - Continued. 
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Figure 17. - Concluded. 
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Figure 18.- Cylindrical gap antenna. 
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Figure 22.- Gap modal electric field distribution. 
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Figure 23.- Normalized aperture external  susceptance as a function of 
cylinder circumference and gap width. 
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Figure 26. - Measured equatorial pattern of gap antenna. 
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NASA-Langley, 1965 


